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Abstract

Small specimen volume and high sample throughput are key features needed for routine methods 

used for population biomonitoring. We modified our routine 8-probe solid phase extraction (SPE) 

LC-MS/MS method for the measurement of five folate vitamers (5-methyltetrahydrofolate [5-

methylTHF], folic acid [FA], plus three minor forms: THF, 5-formylTHF, 5,10-methenylTHF) and 

one oxidation product of 5-methylTHF (MeFox) to require less serum volume (150 μL instead of 

275 μL) by using 96-well SPE plates with 50-mg instead of 100-mg phenyl sorbent and to provide 

faster throughput by using a 96-probe SPE system. Total imprecision (10 days, 2 replicates/day) 

for three serum quality control (QC) pools was 2.8–3.6% for 5-methylTHF (19.5–51.1 nmol/L), 

6.6–8.7% for FA (0.72–11.4 nmol/L), and ≤11.4% for the minor folate forms (<1–5 nmol/L). 

Mean (±SE) recovery of folates spiked into serum (3 days, 4 levels, 2 replicates/level) was: 5-

methylTHF, 99.4±3.6%; FA, 100±1.8%; minor folates, 91.7–108%); SPE extraction efficiencies 

were ≥85% except for THF (78%). Limits of detection were ≤0.3 nmol/L. The new method 

correlated well with our routine method (n=150; r=0.99 for 5-methylTHF, FA, and total folate 

[tFOL, sum of folate forms]) and produced slightly higher tFOL (5.6%) and 5-methylTHF (7.3%) 

concentrations, likely due to the faster 96-probe SPE process (1 vs. 5 h) resulting in improved SPE 

efficiency and recovery compared to the 8-probe SPE method. With this improved LC-MS/MS 

method, 96 samples can be processed in ~2 h and all relevant folate forms can be accurately 

measured using a small serum volume.
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Introduction

Serum folate is an important marker of short-term folate status and has been used for 25 

years to monitor changes in the US population through the National Health and Nutrition 

Examination Survey (NHANES) from before the introduction of folic acid fortification 

(NHANES 1988–1994) to post-fortification (NHANES 1999–2012). The NHANES collects 

cross-sectional data on the health and nutritional status of the civilian non-institutionalized 

US population and has been conducted as a continuous survey with data released every two 

years since 1999. Up to 2006, the Bio-Rad QuantaPhase II radioassay was used to measure 

blood folate concentrations and after the manufacturer discontinued the assay, the 

microbiologic assay (MA) was used from 2007–2010. Both of these assays measured total 

folate (tFOL). In 2010, an expert roundtable advised CDC on folate biomarkers and methods 

for future NHANES surveys [1]. Because in the era of post-fortification, public health 

concerns are no longer limited to low folic acid intakes, but extend to the safety of high 

intakes, which are largely driven by supplement use [2], the roundtable advised NHANES to 

use a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in 2011–2012 

[1]. This allows for the measurement of individual folate vitamers, including unmetabolized 

folic acid (FA), and calculation of tFOL by summation of the individual vitamers. We have 

previously shown good correspondence between the LC-MS/MS determined tFOL and the 

tFOL determined by the MA (on average ~6% lower) [1, 3], the latter assay being 

considered a “gold standard” because it measures all biologically active forms of folate 

nearly equally and does not measure degradation products that lack biological activity [4]. 

However, we have also shown that depending on the calibrator and microorganism used, the 

MA may produce different folate results [5].

Since we developed an automated 8-probe solid phase extraction (SPE) isotope-dilution LC-

MS/MS method for five folate vitamers in serum and whole blood about 10 years ago [6, 7], 

we applied this method to various research studies, including the measurement of 5-

methyltetrahydrofolate (5-methylTHF) and FA in a 1/3 subset of serum samples from 

NHANES 2007–2008. More recently, we modified the LC-MS/MS portion of the method to 

include measurement of an oxidation product of 5-methylTHF known as MeFox (pyrazino-

s-triazine derivative of 4α-hydroxy-5-methylTHF) [8]. This method is currently used to 

measure serum folate forms in NHANES 2011–2012.

The sample volume requirement for the current LC-MS/MS method is 275 μL serum per test 

and the throughput is limited to 76 samples per run as the 8-probe automated SPE process 

takes ~5 h. However, the NHANES sample volume is limited (≤ 700 μL) and fast turnaround 

(< 3 weeks) is needed as folate results are reported to participants typically within a month 

of blood collection. Thus, our primary objective was to further improve the routine LC-

MS/MS method to make it highly suitable for large population biomonitoring studies: scale 

down the SPE procedure so that it requires a smaller sample volume and increase the sample 

throughput. Our secondary objective was to validate this new method and assess how it 

compares to the current routine method as well as to the MA, in order to provide continuity 

for assessing long-term folate trends in NHANES.

Fazili et al. Page 2

Anal Bioanal Chem. Author manuscript; available in PMC 2017 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and methods

Chemicals, reagents, and specimens

All folate monoglutamate standards (5-methylTHF, FA, tetrahydrofolate [THF], 5-

formyltetrahydrofolate [5-formylTHF], 5,10-methenyltetrahydrofolate [5,10-methenylTHF]) 

and MeFox together with their stable-isotope 13C5-labeled analogues (used as internal 

standards) were purchased from Merck, Cie (Schaffhausen, Switzerland). Folate stock 

solutions were prepared as described earlier and concentrations were assigned 

spectrophotometrically using published extinction coefficients [6–8]. Other reagents and 

solvents were of ACS reagent grade unless stated otherwise. Purified water (18 MΩ) from an 

Aqua Solutions water purification system was used to prepare all samples, calibrators and 

reagents. All sample handling was performed under gold-fluorescent light. Low, medium, 

and high quality control (QC) pools were prepared in-house from pooled human serum 

obtained from anonymous blood donors (Tennessee Blood Services, Memphis, TN). Units of 

serum were screened for folate forms, and as needed, spikes of folate calibrators were added 

to the blended pooled materials to achieve different concentrations. L-ascorbic acid (5 g/L) 

was added to each pool to enhance long-term stability of folate forms. All specimens were 

stored at −70 °C when not in use.

Sample preparation and analysis by LC-MS/MS

Descriptions of sample preparation steps for the routine 8-probe (method 1), scaled down 8-

probe (method 2), and scaled down 96-probe (method 3) SPE methods are presented in 

Table 1. We prepared a fresh mixed working calibrator containing 5-methylTHF, FA, THF, 

5-formylTHF, 5,10-methenylTHF, and MeFox (5-methylTHF 2.0 μmoL/L, all other folate 

forms 1.0 μmoL/L) in 1 g/L ascorbic acid for each run from individual frozen stock solutions 

[6–8]. From this mixed calibrator, a six-point calibration curve was prepared in SPE sample 

buffer (10 g/L ammonium formate containing 5 g/L ascorbic acid, pH 3.2) corresponding to 

0–100 nmoL/L for 5-methylTHF and 0–50 nmoL/L for all other folate forms. We also 

processed a reagent blank with each run. We prepared a fresh mixed solution of all internal 

standards in 1 g/L ascorbic acid (200 nmoL/L for 13C5-5-methylTHF and 50 nmoL/L for all 

other labeled folates) for each run from individual frozen stock solutions (corresponding to a 

concentration of 6.0 nmol/L 13C5-5-methylTHF and 1.5 nmol/L for all other labeled folates 

for methods 2 and 3). The LC-MS/MS analysis conditions are described in Table 1 and 

MS/MS instrument settings for each folate form are presented in Supplemental Table 1. 

Quantitation was based on peak area ratios between the analyte and internal standard 

interpolated against the six-point linear calibration curve (no weighting). Evaluation of 

quadratic and cubic curve fits produced non-significant x2 and x3 coefficients for each folate 

form. The aqueous calibration curve was reinjected at the end of each run to assess potential 

calibrator drift. Each run included three serum QC samples measured in duplicate, 

bracketing the unknown samples. A multi-rule QC program [9] based on rules similar to 

Westgard 1 3S, 2 2S, 10 Xbar and R 4S rules was used to determine whether runs were in 

control.
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Method validation

The FDA ”Bioanalytical Method Validation” document [10] and our Division’s “Policies 

and Procedures Manual for Bioanalytical Measurements” provided guidance for method 

validation experiments. All experiments for methods 2 and 3 were carried out in parallel 

(same day) using the same calibration and internal standard solutions. We evaluated 

calibrator accuracy for 10 runs by calculating the mean percent difference between the 

measured and nominal calibrator value (two replicates per run). Method imprecision, 

accuracy and sensitivity were determined for methods 2 and 3 using serum QC pools. We 

analyzed three levels of QC pools in 10 runs (two replicates per run) and calculated the total, 

within- and between-run coefficient of variation (CV). We assessed method accuracy 

through spike recovery. We spiked the low serum QC pool with a calibrator mixture 

containing each folate form at four levels (three runs; two replicates per level; 2, 4, 10, and 

100 nmol/L spike for 5-methylTHF; 1, 2, 10, and 50 nmol/L spike for all other folate forms) 

and also measured the QC pool unspiked (three runs, two replicates each) for endogenous 

folate concentrations (5-methylTHF 19.5, FA 0.67, THF 0.44, 5-formylTHF < LOD, 5,10-

methenylTHF < LOD, MeFox 1.34 nmol/L). To assess spike recovery, we added the mixture 

of internal standards at the same time the spike was added to the sample. To assess SPE 

efficiency, we added the mixture of internal standards after SPE was completed. The spike 

recovery and SPE efficiency were calculated as the measured concentration difference 

between the spiked and unspiked sample divided by the nominal concentration of the spike.

To additionally assess method accuracy, we used serum standard reference materials (SRM) 

from the US National Institute of Standards Technology (NIST; SRM 1955 [11]: levels 1, 2 

and 3; SRM 1950 [12]: one level) and from the United Kingdom National Institute for 

Biological Standards and Control (NIBSC; 03/178 [13]: one level). We measured NIST and 

NIBSC materials in replicates over multiple runs with method 2 (total n = 6) and method 3 

(total n = 12) and compared the results to those obtained with method 1 (total n = 10 

measured over the course of a year) and to 5-methylTHF certified concentrations reported in 

the Certificate. For the two NIST materials, we calculated the expanded uncertainty 

(capturing the uncertainty of our method plus that of the certificate value) for 5-methylTHF 

according to the formula u = 2 × square root [(SD^2/n) + (U/2)^2], with SD being the 

standard deviation obtained from the multiple measurements n and U being the expanded 

uncertainty reported by NIST on the Certificate of Analysis. For the NIBSC material, we 

calculated the CV (mean divided by SD, expressed as percent) instead, as that is the measure 

of variation reported in the Certificate.

To determine method sensitivity, we estimated the limit of detection (LOD) for each analyte 

by serially diluting the medium QC pool with 0.1% ascorbic acid and calculating the SD at a 

concentration of zero (σ0) from an extrapolation of repeat analyte measurements (three 

replicates per dilution, three runs) made near the detection limit in these dilutions [14]. The 

LOD was defined as 3 σ0 and the lower limit of quantitation (LLOQ) as 10 σ0. We 

determined the linear dynamic range by analyzing aqueous calibration curves for each folate 

form in the range of 0–200 nmol/L. We assessed whether aqueous and matrix-based 

calibration curves produce equivalent results by analyzing three independent preparations of 
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each 10-point calibration curve (0–200 nmol/L range) and comparing the slopes of the linear 

regression lines. Slopes that agreed within ± 5% were considered to be equivalent.

Effect of specimen type and anticoagulant

To study the effect of different anticoagulants, we used matched serum and plasma 

specimens from 12 anonymous blood donors (serum, serum separator, K2 EDTA plasma, Na 

heparin plasma, Na citrate plasma [5-mL blood collection tube with 0.5 mL anticoagulant]; 

Tennessee Blood Services). Plasma was obtained within 2–4 h of blood collection (blood 

held at room temperature), serum after overnight clotting (leading to higher serum yield and 

less residual fibrinogen clots) at room temperature through centrifugation at 4 °C, following 

standard operating procedures. Specimens were refrigerated, shipped on cold packs, and 

frozen at −70 °C within 48 h of blood collection. The suitability of plasma as a specimen 

type compared to serum as the reference was evaluated for tFOL (sum of all measured folate 

forms) and the three major folate forms 5-methylTHF, FA, and MeFox. Because plasma 

from the citrate blood collection tube was diluted by 10%, we multiplied results for this 

specimen type by 1.1.

Method comparison studies

We performed a three-way LC-MS/MS cross-over study using randomly selected pristine 

serum specimens (n = 150) from a large CDC study to compare methods 2 and 3 to method 

1 (reference) for tFOL and each folate form. We analyzed a separate pristine aliquot of the 

same serum specimens by MA and compared the tFOLMA (reference) to the 

tFOLwithout MeFox calculated for each of the three LC-MS/MS methods by leaving MeFox 

out from the summation because the MA does not respond to biologically inactive folate 

forms. Study participants provided informed consent. The study protocol was approved by 

the CDC Research Ethics Review Board.

Statistical analysis

We used Analyse-it for Microsoft Excel software version 2.20 (Analyse-it Software Ltd, 

Leeds, U.K.) to evaluate the specimen type and method comparison data using descriptive 

statistics, Pearson correlation, Deming regression (because of error in both variables), and 

Bland-Altman analysis. Because the SD increased over the range of folate concentrations, 

we used weighted Deming regression (variance ratio was assumed to be 1) and presented 

Bland-Altman plots as a percent of the mean. We calculated the mean ± SD concentration 

for each folate form, except when the proportion of results < LOD exceeded 40%, in which 

case we calculated the median and interquartile range (IQR). We calculated the LC-MS/MS 

tFOL as the sum of the individual folate forms, using an imputed value of LOD divided by 

square root of 2 for a folate form result < LOD. P values < 0.05 were considered significant.

Results and discussion

We first modified method 1 to require less specimen volume (150 instead of 275 μL serum) 

by using 96-well SPE plates with smaller bed volume (50-mg instead of 100-mg phenyl 

sorbent), but maintaining the same percent composition of sample, solvents, and internal 

standards as in the routine SPE protocol. This modification makes it possible to reanalyze a 
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sample from a specimen volume ≥ 500-μL in case of a quality control failure or the need to 

confirm a low or high concentration. The 150-μL test volume is lower compared to most 

published multi-analyte folate LC-MS/MS methods, which require anywhere from 200 μL to 

2 mL of serum or plasma [15–19]. The method by Hannisdal et al. requires only 60 μL of 

serum [20], however using such a low specimen volume may come at the cost of not being 

able to detect minor folate forms because of inadequate analytical sensitivity.

To speed up sample throughput, we transferred the SPE procedure from the automated 8-

probe Gilson-215 SPE system, which uses positive pressure and takes 25 min for one row of 

8 samples, to the automated 96-probe Caliper Zephyr SPE system, which uses negative 

pressure controlled by a vacuum manifold. This SPE process takes only 1 h for 96 samples 

(compared to about 5 h for 76 samples using the 8-probe SPE); thus, if needed, we could 

process two 96-well plates per day, which amounts to about 160 unknown samples.

We verified and confirmed that calibration in water produces equivalent results to calibration 

in serum for method 3. Slopes for the two calibration curves (serum vs. water) were < ± 5% 

different for all folate forms (5-methylTHF 4.4%, FA 3.1%, THF −2.6%, 5-formylTHF 

4.4%, 5,10-methenylTHF −1.1%, and MeFox 1.8%). We have previously shown that matrix 

equivalency was also obtained for the routine 8-probe SPE method [6]. Because our methods 

are based on isotope-dilution mass spectrometry, this is not surprising; it is expected that any 

matrix effect on the analyte should be the same as for the isotopically labeled internal 

standard and since the ratio of the two is used for calibration, a potential matrix effect should 

cancel out. The aqueous calibration curves showed linearity for each folate form over two 

orders of magnitude (0–200 nmol/L): 5-methylTHF (slope: 0.0246, intercept: 0.0052, r2: 

0.9999); FA (slope: 0.1041, intercept: 0.0169, r2: 0.9997); THF (slope: 0.1220, intercept: 

−0.0285, r2: 0.9995); 5-formylTHF (slope: 0.0843, intercept: −0.0104, r2: 0.9998); 5,10-

methenylTHF (slope: 0.1157, intercept: 0.0693, r2: 0.9977); and MeFox (slope: 0.0966, 

intercept: 0.0101, r2: 0.9998). Because 5-methylTHF concentrations and concentrations of 

other folate forms are rarely higher than 100 and 50 nmol/L in serum [3], we limited our 

daily calibration range to these lower concentrations. The variability (CV) of the daily 

calibration slopes over 10 days was < 10% for each folate form except for FA: 5-methylTHF 

2.8%, FA 11.3%, THF 8.7%, 5-formylTHF 3.2%, 5,10-methenylTHF 5.6%, and MeFox 

4.9%. The average calibrator accuracy was generally within 5% of the nominal value (except 

for the lowest calibrator for FA where it was within 9%) (Table 2). The average calibrator 

drift (reinjection at the end of the run) was < 2% from the calculated calibrator value (first 

injection) for each folate form. Similar calibrator accuracy data were obtained for method 2 

(see Table S2 in the Electronic Supplementary Material).

The measurement sensitivity, as expressed by the LOD for each analyte in serum, was 

overall comparable between method 3 (≤ 0.31 nmol/L, Table 2) and method 2 (≤ 0.37 

nmol/L, see Table S2 in the Electronic Supplementary Material; same LOD values applied to 

method 1). We also found similar LOD values if we used 4% albumin (instead of 0.1% 

ascorbic acid) as a diluent to simulate a protein matrix (Table 2 and Table S2). The LOD 

values were commensurate or better to other published multi-analyte folate LC-MS/MS 

methods [17, 19, 20]. Future enhancements in instrument sensitivity, ionization modes, or 

stationary phases would mostly benefit analytes such as THF, 5-formylTHF, and 5,10-
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methenylTHF because they occur in serum at very low concentrations, while serum 

concentrations of 5-methylTHF are well above the LOD and concentrations of MeFox and 

FA are mostly above the LOD. While some methods improved the analytical sensitivity by 

taking the SPE eluate to dryness and reconstituting the sample in a small volume [15, 17, 20, 

21], we avoided such a step as it increases the sample preparation time and may lead to 

folate oxidation (21). Typical method 3 tandem multiple reaction monitoring (MRM) 

profiles for the low (5-methylTHF, FA and MeFox) or medium (THF, 5-formylTHF and 

5,10-methenylTHF) serum QC pool are shown in Fig S1 and S2 in the Electronic 

Supplementary Material. Most traces showed a “clean” profile; however the THF trace 

showed some neighboring peaks that were reasonably well resolved from the THF peak. 

Because we did not change the chromatography of method 1, there was no need to reassess 

the method selectivity or the potential for the matrix to suppress or enhance the ion signals 

for methods 2 and 3. We previously showed good selectivity for method 1 with virtually no 

contributing signals (< 0.01%) when we examined each transition for spurious signal 

contributions from other folate forms and a lack of matrix effects using a post-column 

infusion procedure [6–8].

The precision of method 3 was good with an observed total CV well below 5% for tFOL and 

5-methylTHF, and well below 10% for all other folate forms (except for THF and 5-

formylTHF at concentrations < 1.5 nmol/L; 11%) (Table 2). We obtained similarly good 

precision for method 2 (see Table S2 in the Electronic Supplementary Material), with 

slightly higher CV for some analytes. The total CV for method 1 used over a period of one 

year (n = 122) was also generally comparable (tFOL < 3%, 5-methylTHF < 3%, MeFox < 

7%, 5,10-methenylTHF ≤ 8%, 5-formylTHF ≤ 10%), except for a few analytes where it was 

higher (THF ≤ 13%, FA ≤ 17%) (data not shown). It has been suggested that generally 

applicable quality goals based on biologic variation should be used to assess whether the 

method precision is acceptable; the analytical variation CVa should be a fraction of the 

within-person biologic variation CVw: optimum performance, CVa = 0.25 × CVw, desirable 

performance, CVa = 0.5 × CVw, minimum performance, CVa = 0.75 × CVw [22]. Using data 

from NHANES 1999–2002, serum (total) folate was reported to have a within-person 

biologic variation of 21.5% [23]. Therefore, the optimum, desirable, and minimum precision 

performance criteria would be < 5.4%, < 10.8%, and < 16.1%, respectively. Method 3 falls 

into the optimum performance category for tFOL, and also for 5-methylTHF and MeFox, if 

we apply the same criteria to the latter folate forms; it falls into the desirable performance 

category for the other folate forms. Other published multi-analyte folate LC-MS/MS 

methods have not reported the CV for tFOL, but they also reported ≤ 5% CV for 5-

methylTHF and higher CV for minor folate forms, in some cases not achieving the desirable 

or minimum performance categories [17, 19, 20].

The use of isotopically labeled internal standards during sample processing is expected to 

correct for any potential folate losses. We found nearly complete spiking recoveries (100 

± 10%) for all folate forms at almost all spiking levels for methods 2 (Table S2 in the 

Electronic Supplementary Material) and 3 (Table 2), but method 3 (92%–108% mean 

spiking recovery) performed better than method 2 (87%–105% mean spiking recovery) and 

showed complete (100 ± 1%) recoveries for 5-methylTHF, FA, THF, and MeFox (Fig 1, 
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panel A). These recoveries were higher than those reported by other published multi-analyte 

folate LC-MS/MS methods [17, 19, 20]. The reason for the improved recoveries with 

method 3 lie in the improved SPE efficiencies (Fig 1, panel B). SPE efficiencies were 

consistently better for all folate forms, particularly for the most labile folate form THF 

(method 3, 78%; method 2, 57%), likely due to the much faster 96-probe SPE process in 

method 3 compared to the 8-probe SPE in method 2. The spiking recoveries and SPE 

efficiencies obtained with method 2 (see Table S2 in the Electronic Supplementary Material) 

were similar to previously reported results from method 1 [6–8].

Serum-based international reference materials for folate have been available for several 

years, unfortunately though certified concentrations are provided for 5-methylTHF only. The 

5-methylTHF concentrations we obtained for the two NIST materials (SRM 1955 and 1950) 

and the NIBSC material were up to 12% higher than the certified concentrations (Table 3). 

Methods 1 and 2 generally showed similar results within less than ± 10% of the certificate 

value and the uncertainties for methods 1 and 2 were similar to and overlapped with the 

Certificate uncertainties. Method 3 showed slightly higher 5-methylTHF results, likely due 

to the improved recovery of 5-methylTHF, and while the uncertainties for method 3 were 

again similar to the Certificate uncertainties, they no longer overlapped. However, because 

we have taken all necessary steps to ensure accurate calibration and the recovery for method 

3 is complete, we believe that the 5-methylTHF results produced by this method are 

accurate. FA and MeFox were the only other two folate forms detected in these reference 

materials, all other folate forms were < LOD. Concentrations (mean ± SD, nmol/L) obtained 

with method 3 (shown below) were within less than ± 10% of those obtained with the other 

two methods: NIST SRM 1955: Level 1, FA 0.80 ± 0.09, MeFox 1.52 ± 0.05; Level 2, FA 

1.65 ± 0.14, MeFox 3.50 ± 0.13; Level 3, FA 1.70 ± 0.17, MeFox 5.61 ± 0.22; NIST SRM 

1950: FA 4.45 ± 0.16, MeFox 2.03 ± 0.16; NIBSC 03-178: FA 0.66 ± 0.07, MeFox 2.24 

± 0.09.

Although serum is generally preferred over plasma, which tends to form micro fibrinogen 

clots during long-term frozen storage, plasma is sometimes the only specimen type available 

and we therefore wanted to assess whether it can be used interchangeably with serum. As 

expected, we generally found excellent and highly significant correlations between serum 

and plasma folate concentrations (r ≥ 0.97; see Table S3 in the Electronic Supplementary 

Material). Concentrations of tFOL, 5-methylTHF and FA were not significantly different 

between serum (reference) vs. serum from a separator tube or plasma from a Na heparin or 

Na citrate tube. We found a proportional bias for MeFox, with Na heparin (relative Bland-

Altman bias [RBAB] −35%, P = 0005) and Na citrate (RBAB −26%, P = 0.0005) plasma 

concentrations being lower compared to serum, likely because the plasma was obtained 

faster (after 2-4 h) than the serum (overnight clotting). Interestingly, we observed no 

difference in 5-methylTHF concentrations between serum and Na heparin or Na citrate 

plasma, however the expected difference may be too small to detect (≤ 1 nmol/L). We 

noticed large differences in 5-methylTHF (RBAB −45%, P = 0.0005), MeFox (RBAB 

108%, P = 0.0005) and consequentially tFOL (RBAB −15%, P = 0.0005) between serum 

and EDTA plasma and also a weaker correlation for MeFox (r = 0.78). Lastly, we found 

slightly lower (< 10%) FA concentrations in EDTA plasma (RBAB −5.4%, P = 0.0269) and 

Na heparin plasma [RBAB] −7%, P = 0.0122) compared to serum.
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Hannisdal et al. also studied the influence of specimen type on 5-methylTHF and MeFox 

(which they preliminarily called hmTHF) for matched serum and plasma (EDTA, heparin 

and citrate) specimens (n = 16) kept at room temperature in the dark for up to 192 h [24]. 

The authors did not find specimen type differences at baseline (blood processed within < 1 h 

and frozen immediately at −80 °C) and 5-methylTHF concentrations were essentially stable 

for 48 h in serum, consistent with our findings where serum was obtained after overnight 

clotting. However in EDTA plasma, 5-methylTHF decreased and MeFox increased at a rate 

of 1.92% per h and 25.7% per h, respectively during the first phase of rapid change. In 

serum, the reduction of 5-methylTHF was totally recovered as MeFox after 96 h, while in 

EDTA plasma a smaller percentage of 5-methylTHF was recovered as MeFox. Our results 

were similar in that the sum of 5-methylTHF and MeFox was lower in EDTA plasma (28.4 

nmol/L) than in every other specimen type (32.8–33.5 nmol/L) (Fig 2). This shows that 

EDTA plasma may lead to undesirable folate losses and is therefore not a good specimen 

type for folate analysis. In a previous in-house “anticoagulant study” in which we processed 

all blood specimens within 1 h of collection, we observed a smaller difference in tFOL 

between EDTA plasma and serum (-3.8%) [7].

The three-way LC-MS/MS cross-over study using pristine serum specimens (n = 150) to 

compare methods 2 and 3 to method 1 (reference) for tFOL and the main folate forms 5-

methylTHF, FA, and MeFox showed, as expected, excellent correlations (r ≥ 0.98, Table 4). 

Method 2 had no or only minimal bias compared to method 1: there was no difference in 

tFOL or MeFox concentrations; 5-methylTHF concentrations were 1.1% higher and FA 

concentrations were 12% higher. Method 3 showed a consistent small positive bias 

compared to method 1, reflected by an increased Deming slope and a proportional Bland-

Altman bias (95% CI): tFOL 5.6% (4.8–6.5%), 5-methylTHF 7.3% (6.5–8.2%), FA 16% 

(12–19%), and MeFox 3.6% (1.7–5.5%). This is likely due to the improved recovery of 

folate forms with this method.

In a second three-way cross-over study, we compared the tFOLMA (reference) for the same 

serum specimens analyzed from a separate pristine aliquot to the LC-MS/MS calculated 

tFOLwithout MeFox because the MA does not respond to MeFox, a biologically inactive folate 

form (Fig 3). The MA mean tFOLMA (± SD) was 39.3 ± 21.3 nmol/L, while the three LC-

MS/MS means tFOLwithout MeFox were: method 1, 41.0 ± 21.3 nmol/L; method 2, 41.1 

± 21.2 nmol/L; and method 3, 43.6 ± 23.0 nmol/L. We found good correlations: method 1 

vs. MA, r = 0.97; method 2 vs. MA, r = 0.97; and method 3 vs. MA, r = 0.97 (see Table S4 

in the Electronic Supplementary Material). For each comparison, the LC-MS/MS 

tFOLwithout MeFox was significantly higher than the tFOLMA, reflected by a proportional 

Bland-Altman bias (95% CI): method 1 vs. MA, 5.8% (3.6–7.9%); method 2 vs. MA, 6.2% 

(4.2–8.2%); and method 3 vs. MA, 11% (9.5–13%). To allow trending of future NHANES 

folate data in both directions, we also report the Deming regression equations for the 

conversion of LC-MS/MS to MA results (see Table S4 in the Electronic Supplementary 

Material).

Biochemical analyses methods used as part of population biomonitoring require several 

features to make them suitable for this type of application: (1) low imprecision to allow 

distinction of concentration distribution curves across different subgroups; (2) high accuracy 
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to ensure that accepted cutoffs of nutrient adequacy or clinical deficiency are appropriate for 

the survey context; (3) long-term stability to establish trends in estimates over time; (4) good 

sensitivity to ensure a high analyte detection frequency in the population; (5) low specimen 

test volume because generally a panel of biochemical analyses have to be conducted from 

the collected sample; and (6) high sample throughput because typically several thousand 

samples have to be analyzed per year and results of clinical relevance have to be reported 

back to the participant in a timely manner. This report presents an improved and validated 

routine biomonitoring method for five folate vitamers and one oxidation product of 5-

methylTHF in serum. The method displays five of the six required features, which makes it 

highly suitable for population biomonitoring. Its application over time to population studies 

will demonstrate whether it will also provide good long-term stability. Regular use of the 

available international reference materials helps to document method stability, however 

reference materials with certified concentrations for all detected folate forms as well as 

tFOL are urgently needed to anchor method accuracy to a traceability chain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Spiking recovery and SPE efficiency of folate forms added to serum for methods 2 (8-probe) 

and 3 (96-probe)

The low serum QC pool was spiked with a calibrator mixture containing each folate form at 

four levels (two replicates per level, three runs; 2, 4, 10, and 100 nmol/L spike for 5-

methylTHF; 1, 2, 10, and 50 nmol/L spike for all other folate forms) and also measured 

unspiked (two replicates per run, three runs) for endogenous folate concentrations. The 

mixture of internal standards was added at the same time as the spike in the spike recovery 

experiment, but after SPE was completed in the SPE efficiency experiment. The spiking 

recovery and SPE efficiency were calculated as the measured concentration difference 

between the spiked and unspiked sample divided by the nominal concentration of the spike. 

Bars represent the average from the four spiking levels and error bars represent the 95% 

confidence limit of the mean of all data (n = 24). Spike recovery results for each individual 

spiking level can be found in Table 2 (method 3) and Table S2 (method 2). 5-MethyTHF, 5-

methyltetrahydrofolate; FA, folic acid; THF, tetrahydrofolate; 5-formylTHF, 5-

formyltetrahydro-folate; 5,10-methenylTHF, 5,10-methenyltetrahydrofolate; MeFox, 

pyrazino-s-triazine derivative of 4α-hydroxy-5-methylTHF.
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Fig. 2. 
Effect of specimen type and anticoagulant on folate forms

Twelve matched serum and plasma samples were analyzed with the scaled down 96-probe 

SPE LC-MS/MS method. K2 EDTA and Na heparin were spray dried anticoagulants, while 

Na citrate was a liquid (0.5 mL/5-mL vacutainer tube); folate results were multiplied by 1.1 

to correct for this dilution. 5-MethyTHF, 5-methyltetrahydrofolate; FA, folic acid; MeFox, 

pyrazino-s-triazine derivative of 4α-hydroxy-5-methylTHF; tFOL, total folate (sum of all 

folate forms including MeFox); other folate forms were < LOD.
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Fig. 3. 
Comparison of total folate results in serum samples obtained by different LC-MS/MS 

methods and by microbiologic assay

Method comparison consisted of two separate aliquots of 150 pristine serum samples, one 

aliquot analyzed by microbiologic assay (MA) for tFOLMA and the second aliquot analyzed 

by three different LC-MS/MS methods (method 1: routine 8-probe SPE; method 2: scaled 

down 8-probe SPE; method 3: scaled down 96-probe SPE) for folate forms that were 

summed up for tFOLwithout MeFox because the MA does not respond to the biologically 

inactive MeFox. Panels A, C and E show weighted Deming regressions (because the SD 

increased over the range of folate concentrations) with tFOL by MA as the reference. Panels 

B, D and F show relative Bland-Altman plots (because the distribution of differences was 

not normal) with the tFOL by MA as the reference; “mean of all” is the mean of the two 

methods.
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